Eclats de vers : Matemat : Integrales unidimensionnelles
Table des matières
\( \newcommand{\parentheses}[1]{\left(#1\right)} \newcommand{\crochets}[1]{\left[#1\right]} \newcommand{\accolades}[1]{\left\{#1\right\}} \newcommand{\ensemble}[1]{\left\{#1\right\}} \newcommand{\identite}{\mathrm{Id}} \newcommand{\indicatrice}{\boldsymbol{\delta}} \newcommand{\dirac}{\delta} \newcommand{\moinsun}{{-1}} \newcommand{\inverse}{\ddagger} \newcommand{\pinverse}{\dagger} \newcommand{\topologie}{\mathfrak{T}} \newcommand{\ferme}{\mathfrak{F}} \newcommand{\img}{\mathbf{i}} \newcommand{\binome}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\canonique}{\mathfrak{c}} \newcommand{\tenseuridentite}{\boldsymbol{\mathcal{I}}} \newcommand{\permutation}{\boldsymbol{\epsilon}} \newcommand{\matriceZero}{\mathfrak{0}} \newcommand{\matriceUn}{\mathfrak{1}} \newcommand{\christoffel}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\lagrangien}{\mathfrak{L}} \newcommand{\sousens}{\mathfrak{P}} \newcommand{\partition}{\mathrm{Partition}} \newcommand{\tribu}{\mathrm{Tribu}} \newcommand{\topologies}{\mathrm{Topo}} \newcommand{\setB}{\mathbb{B}} \newcommand{\setN}{\mathbb{N}} \newcommand{\setZ}{\mathbb{Z}} \newcommand{\setQ}{\mathbb{Q}} \newcommand{\setR}{\mathbb{R}} \newcommand{\setC}{\mathbb{C}} \newcommand{\corps}{\mathbb{K}} \newcommand{\boule}{\mathfrak{B}} \newcommand{\intervalleouvert}[2]{\left] #1 , #2 \right[} \newcommand{\intervallesemiouvertgauche}[2]{ \left] #1 , #2 \right]} \newcommand{\intervallesemiouvertdroite}[2]{\left[ #1 , #2 \right[ } \newcommand{\fonction}{\mathbb{F}} \newcommand{\bijection}{\mathrm{Bij}} \newcommand{\polynome}{\mathrm{Poly}} \newcommand{\lineaire}{\mathrm{Lin}} \newcommand{\continue}{\mathrm{Cont}} \newcommand{\homeomorphisme}{\mathrm{Hom}} \newcommand{\etagee}{\mathrm{Etagee}} \newcommand{\lebesgue}{\mathrm{Leb}} \newcommand{\lipschitz}{\mathrm{Lip}} \newcommand{\suitek}{\mathrm{Suite}} \newcommand{\matrice}{\mathbb{M}} \newcommand{\krylov}{\mathrm{Krylov}} \newcommand{\tenseur}{\mathbb{T}} \newcommand{\essentiel}{\mathfrak{E}} \newcommand{\relation}{\mathrm{Rel}} \DeclareMathOperator*{\strictinferieur}{\ < \ } \DeclareMathOperator*{\strictsuperieur}{\ > \ } \DeclareMathOperator*{\ensinferieur}{\eqslantless} \DeclareMathOperator*{\enssuperieur}{\eqslantgtr} \DeclareMathOperator*{\esssuperieur}{\gtrsim} \DeclareMathOperator*{\essinferieur}{\lesssim} \newcommand{\essegal}{\eqsim} \newcommand{\union}{\ \cup \ } \newcommand{\intersection}{\ \cap \ } \newcommand{\opera}{\divideontimes} \newcommand{\autreaddition}{\boxplus} \newcommand{\autremultiplication}{\circledast} \newcommand{\commutateur}[2]{\left[ #1 , #2 \right]} \newcommand{\convolution}{\circledcirc} \newcommand{\correlation}{\ \natural \ } \newcommand{\diventiere}{\div} \newcommand{\modulo}{\bmod} \DeclareMathOperator*{\pgcd}{pgcd} \DeclareMathOperator*{\ppcm}{ppcm} \newcommand{\produitscalaire}[2]{\left\langle #1 \vert #2 \right\rangle} \newcommand{\scalaire}[2]{\left\langle #1 \| #2 \right\rangle} \newcommand{\braket}[3]{\left\langle #1 \vert #2 \vert #3 \right\rangle} \newcommand{\orthogonal}{\bot} \newcommand{\forme}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\biforme}[3]{\left\langle #1 , #2 , #3 \right\rangle} \newcommand{\contraction}[3]{\left\langle #1 \odot #3 \right\rangle_{#2}} \newcommand{\dblecont}[5]{\left\langle #1 \vert #3 \vert #5 \right\rangle_{#2,#4}} \DeclareMathOperator*{\major}{major} \DeclareMathOperator*{\minor}{minor} \DeclareMathOperator*{\maxim}{maxim} \DeclareMathOperator*{\minim}{minim} \DeclareMathOperator*{\argument}{arg} \DeclareMathOperator*{\argmin}{arg\ min} \DeclareMathOperator*{\argmax}{arg\ max} \DeclareMathOperator*{\supessentiel}{ess\ sup} \DeclareMathOperator*{\infessentiel}{ess\ inf} \newcommand{\dual}{\star} \newcommand{\distance}{\mathfrak{dist}} \newcommand{\norme}[1]{\left\| #1 \right\|} \newcommand{\normetrois}[1]{\left|\left\| #1 \right\|\right|} \DeclareMathOperator*{\adh}{adh} \DeclareMathOperator*{\interieur}{int} \newcommand{\frontiere}{\partial} \DeclareMathOperator*{\image}{im} \DeclareMathOperator*{\domaine}{dom} \DeclareMathOperator*{\noyau}{ker} \DeclareMathOperator*{\support}{supp} \DeclareMathOperator*{\signe}{sign} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\unsur}[1]{\frac{1}{#1}} \newcommand{\arrondisup}[1]{\lceil #1 \rceil} \newcommand{\arrondiinf}[1]{\lfloor #1 \rfloor} \DeclareMathOperator*{\conjugue}{conj} \newcommand{\conjaccent}[1]{\overline{#1}} \DeclareMathOperator*{\division}{division} \newcommand{\difference}{\boldsymbol{\Delta}} \newcommand{\differentielle}[2]{\mathfrak{D}^{#1}_{#2}} \newcommand{\OD}[2]{\frac{d #1}{d #2}} \newcommand{\OOD}[2]{\frac{d^2 #1}{d #2^2}} \newcommand{\NOD}[3]{\frac{d^{#3} #1}{d #2^{#3}}} \newcommand{\deriveepartielle}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\PD}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dblederiveepartielle}[2]{\frac{\partial^2 #1}{\partial #2 \partial #2}} \newcommand{\dfdxdy}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\dfdxdx}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\gradient}{\mathbf{\nabla}} \newcommand{\combilin}[1]{\mathrm{span}\{ #1 \}} \DeclareMathOperator*{\trace}{tr} \newcommand{\proba}{\mathbb{P}} \newcommand{\probaof}[1]{\mathbb{P}\left[#1\right]} \newcommand{\esperof}[1]{\mathbb{E}\left[#1\right]} \newcommand{\cov}[2]{\mathrm{cov} \left( #1 , #2 \right) } \newcommand{\var}[1]{\mathrm{var} \left( #1 \right) } \newcommand{\rand}{\mathrm{rand}} \newcommand{\variation}[1]{\left\langle #1 \right\rangle} \DeclareMathOperator*{\composante}{comp} \DeclareMathOperator*{\bloc}{bloc} \DeclareMathOperator*{\ligne}{ligne} \DeclareMathOperator*{\colonne}{colonne} \DeclareMathOperator*{\diagonale}{diag} \newcommand{\matelementaire}{\mathrm{Elem}} \DeclareMathOperator*{\matpermutation}{permut} \newcommand{\matunitaire}{\mathrm{Unitaire}} \newcommand{\gaussjordan}{\mathrm{GaussJordan}} \newcommand{\householder}{\mathrm{Householder}} \DeclareMathOperator*{\rang}{rang} \newcommand{\schur}{\mathrm{Schur}} \newcommand{\singuliere}{\mathrm{DVS}} \newcommand{\convexe}{\mathrm{Convexe}} \newcommand{\petito}[1]{o\left(#1\right)} \newcommand{\grando}[1]{O\left(#1\right)} \)
\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)
1. Intreduction
Soit une fonction \(f : \setR \mapsto \setR\) et \(a,b \in \setR\) tels que \(a \le b\).
1.1. Intervalle
On définit la notation particulière :
\[\int_a^b f(x) \ d\mu(x) = \int_{[a,b]} f(x) \ d\mu(x)\]
1.2. Intervalle inversé
On étend la notation à des « intervalles » inversés par :
\[\int_b^a f(x) \ d\mu(x) = - \int_a^b f(x) \ d\mu(x)\]
1.3. Intervalle ouvert
Pour les intervalles ouverts, on considère la limite :
\[\int_{]a,b[} f(x) \ d\mu(x) = \lim_{(s,t) \to (a,b)} \int_s^t f(x) \ d\mu(x)\]
1.4. Infini
Quand une des bornes de l'intervalle tend vers l'infini, on définit l'intégrale par :
\( \int_a^{+\infty} f(x) \ d\mu(x) = \lim_{b \to +\infty} \int_a^b f(x) \ d\mu(x) \)
\( \int_{-\infty}^b f(x) \ d\mu(x) = \lim_{a \to -\infty} \int_a^b f(x) \ d\mu(x) \)
1.5. Sur l'ensemble des réels
Enfin, l'intégrale sur \(\setR\) entier est définie par :
\[\int_{-\infty}^{+\infty} f(x) \ d\mu(x) = \int_\setR f(x) \ d\mu(x) = \lim_{a \to -\infty} \int_{-a}^a f(x) \ d\mu(x)\]
2. Additivité d'intervalles
Soit \(a,b,c,\alpha,\beta \in \setR\) avec \(\alpha \le a,b,c \le \beta\). Soit une fonction intégrable \(f : [\alpha,\beta] \mapsto \setR\). Posons :
\[I(x,y) = \int_x^y f(\xi) \ d\xi\]
où \(d\xi = d\mu_L(\xi)\) est la mesure de Lebesgue. Par définition, on a :
\[I(y,x) = - I(x,y)\]
Si \(a \le b \le c\), on a :
\[\mu_L( [a,b] \cap [b,c] ) = \mu_L( \{ b \} ) = 0\]
L'additivité nous donne alors :
\[I(a,c) = I(a,b) + I(b,c)\]
Si \(a \le c \le b\), on a :
\[\mu_L( [a,c] \cap [c, b] ) = \mu_L( \{ c \} ) = 0\]
et :
\[I(a,b) = I(a,c) + I(c,b)\]
On en déduit que :
\[I(a,c) = I(a,b) - I(c,b) = I(a,b) + I(b,c)\]
On vérifie pareillement, en considérant tous les cas, que \(I(a,b) = I(a,c) + I(c,b)\) quel que soit l'ordre des réels \(a,b,c\). On a donc :
\[\int_a^c f(x) \ dx = \int_a^b f(x) \ dx + \int_b^c f(x) \ dx\]
3. Valeur moyenne d'une intégrale
Soit la fonction intégrable et continue \(f : [a,b] \mapsto \setR\). Pour la mesure de Lebesgue, on a :
\( \supessentiel \{ f(x) : x \in [a,b] \} = \max f([a,b]) \)
\( \infessentiel \{ f(x) : x \in [a,b] \} = \min f([a,b]) \)
Les bornes d'une fonction continue sur un intervalle fermé étant atteintes, on peut trouver des réels \(\sigma,\lambda \in [a,b]\) tels que :
\( f(\sigma) = \max f([a,b]) \)
\( f(\lambda) = \min f([a,b]) \)
Les bornes de l'intégrales nous disent que :
\[f(\lambda) \le \unsur{b - a} \int_a^b f(s) ds \le f(\sigma)\]
Le théorème des valeurs intermédiaires nous permet alors de trouver un \(c\) compris entre \(\lambda\) et \(\sigma\) (et donc dans \([a,b]\)) tel que :
\[f(c) = \unsur{b - a} \int_a^b f(s) ds\]