Eclats de vers : Matemat : Extréma réels

Index des Grimoires

Retour à l’accueil

Table des matières

\( \newcommand{\parentheses}[1]{\left(#1\right)} \newcommand{\crochets}[1]{\left[#1\right]} \newcommand{\accolades}[1]{\left\{#1\right\}} \newcommand{\ensemble}[1]{\left\{#1\right\}} \newcommand{\identite}{\mathrm{Id}} \newcommand{\indicatrice}{\boldsymbol{\delta}} \newcommand{\dirac}{\delta} \newcommand{\moinsun}{{-1}} \newcommand{\inverse}{\ddagger} \newcommand{\pinverse}{\dagger} \newcommand{\topologie}{\mathfrak{T}} \newcommand{\ferme}{\mathfrak{F}} \newcommand{\img}{\mathbf{i}} \newcommand{\binome}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\canonique}{\mathfrak{c}} \newcommand{\tenseuridentite}{\boldsymbol{\mathcal{I}}} \newcommand{\permutation}{\boldsymbol{\epsilon}} \newcommand{\matriceZero}{\mathfrak{0}} \newcommand{\matriceUn}{\mathfrak{1}} \newcommand{\christoffel}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\lagrangien}{\mathfrak{L}} \newcommand{\sousens}{\mathfrak{P}} \newcommand{\partition}{\mathrm{Partition}} \newcommand{\tribu}{\mathrm{Tribu}} \newcommand{\topologies}{\mathrm{Topo}} \newcommand{\setB}{\mathbb{B}} \newcommand{\setN}{\mathbb{N}} \newcommand{\setZ}{\mathbb{Z}} \newcommand{\setQ}{\mathbb{Q}} \newcommand{\setR}{\mathbb{R}} \newcommand{\setC}{\mathbb{C}} \newcommand{\corps}{\mathbb{K}} \newcommand{\boule}{\mathfrak{B}} \newcommand{\intervalleouvert}[2]{\left] #1 , #2 \right[} \newcommand{\intervallesemiouvertgauche}[2]{ \left] #1 , #2 \right]} \newcommand{\intervallesemiouvertdroite}[2]{\left[ #1 , #2 \right[ } \newcommand{\fonction}{\mathbb{F}} \newcommand{\bijection}{\mathrm{Bij}} \newcommand{\polynome}{\mathrm{Poly}} \newcommand{\lineaire}{\mathrm{Lin}} \newcommand{\continue}{\mathrm{Cont}} \newcommand{\homeomorphisme}{\mathrm{Hom}} \newcommand{\etagee}{\mathrm{Etagee}} \newcommand{\lebesgue}{\mathrm{Leb}} \newcommand{\lipschitz}{\mathrm{Lip}} \newcommand{\suitek}{\mathrm{Suite}} \newcommand{\matrice}{\mathbb{M}} \newcommand{\krylov}{\mathrm{Krylov}} \newcommand{\tenseur}{\mathbb{T}} \newcommand{\essentiel}{\mathfrak{E}} \newcommand{\relation}{\mathrm{Rel}} \DeclareMathOperator*{\strictinferieur}{\ < \ } \DeclareMathOperator*{\strictsuperieur}{\ > \ } \DeclareMathOperator*{\ensinferieur}{\eqslantless} \DeclareMathOperator*{\enssuperieur}{\eqslantgtr} \DeclareMathOperator*{\esssuperieur}{\gtrsim} \DeclareMathOperator*{\essinferieur}{\lesssim} \newcommand{\essegal}{\eqsim} \newcommand{\union}{\ \cup \ } \newcommand{\intersection}{\ \cap \ } \newcommand{\opera}{\divideontimes} \newcommand{\autreaddition}{\boxplus} \newcommand{\autremultiplication}{\circledast} \newcommand{\commutateur}[2]{\left[ #1 , #2 \right]} \newcommand{\convolution}{\circledcirc} \newcommand{\correlation}{\ \natural \ } \newcommand{\diventiere}{\div} \newcommand{\modulo}{\bmod} \DeclareMathOperator*{\pgcd}{pgcd} \DeclareMathOperator*{\ppcm}{ppcm} \newcommand{\produitscalaire}[2]{\left\langle #1 \vert #2 \right\rangle} \newcommand{\scalaire}[2]{\left\langle #1 \| #2 \right\rangle} \newcommand{\braket}[3]{\left\langle #1 \vert #2 \vert #3 \right\rangle} \newcommand{\orthogonal}{\bot} \newcommand{\forme}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\biforme}[3]{\left\langle #1 , #2 , #3 \right\rangle} \newcommand{\contraction}[3]{\left\langle #1 \odot #3 \right\rangle_{#2}} \newcommand{\dblecont}[5]{\left\langle #1 \vert #3 \vert #5 \right\rangle_{#2,#4}} \DeclareMathOperator*{\major}{major} \DeclareMathOperator*{\minor}{minor} \DeclareMathOperator*{\maxim}{maxim} \DeclareMathOperator*{\minim}{minim} \DeclareMathOperator*{\argument}{arg} \DeclareMathOperator*{\argmin}{arg\ min} \DeclareMathOperator*{\argmax}{arg\ max} \DeclareMathOperator*{\supessentiel}{ess\ sup} \DeclareMathOperator*{\infessentiel}{ess\ inf} \newcommand{\dual}{\star} \newcommand{\distance}{\mathfrak{dist}} \newcommand{\norme}[1]{\left\| #1 \right\|} \newcommand{\normetrois}[1]{\left|\left\| #1 \right\|\right|} \DeclareMathOperator*{\adh}{adh} \DeclareMathOperator*{\interieur}{int} \newcommand{\frontiere}{\partial} \DeclareMathOperator*{\image}{im} \DeclareMathOperator*{\domaine}{dom} \DeclareMathOperator*{\noyau}{ker} \DeclareMathOperator*{\support}{supp} \DeclareMathOperator*{\signe}{sign} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\unsur}[1]{\frac{1}{#1}} \newcommand{\arrondisup}[1]{\lceil #1 \rceil} \newcommand{\arrondiinf}[1]{\lfloor #1 \rfloor} \DeclareMathOperator*{\conjugue}{conj} \newcommand{\conjaccent}[1]{\overline{#1}} \DeclareMathOperator*{\division}{division} \newcommand{\difference}{\boldsymbol{\Delta}} \newcommand{\differentielle}[2]{\mathfrak{D}^{#1}_{#2}} \newcommand{\OD}[2]{\frac{d #1}{d #2}} \newcommand{\OOD}[2]{\frac{d^2 #1}{d #2^2}} \newcommand{\NOD}[3]{\frac{d^{#3} #1}{d #2^{#3}}} \newcommand{\deriveepartielle}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\PD}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dblederiveepartielle}[2]{\frac{\partial^2 #1}{\partial #2 \partial #2}} \newcommand{\dfdxdy}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\dfdxdx}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\gradient}{\mathbf{\nabla}} \newcommand{\combilin}[1]{\mathrm{span}\{ #1 \}} \DeclareMathOperator*{\trace}{tr} \newcommand{\proba}{\mathbb{P}} \newcommand{\probaof}[1]{\mathbb{P}\left[#1\right]} \newcommand{\esperof}[1]{\mathbb{E}\left[#1\right]} \newcommand{\cov}[2]{\mathrm{cov} \left( #1 , #2 \right) } \newcommand{\var}[1]{\mathrm{var} \left( #1 \right) } \newcommand{\rand}{\mathrm{rand}} \newcommand{\variation}[1]{\left\langle #1 \right\rangle} \DeclareMathOperator*{\composante}{comp} \DeclareMathOperator*{\bloc}{bloc} \DeclareMathOperator*{\ligne}{ligne} \DeclareMathOperator*{\colonne}{colonne} \DeclareMathOperator*{\diagonale}{diag} \newcommand{\matelementaire}{\mathrm{Elem}} \DeclareMathOperator*{\matpermutation}{permut} \newcommand{\matunitaire}{\mathrm{Unitaire}} \newcommand{\gaussjordan}{\mathrm{GaussJordan}} \newcommand{\householder}{\mathrm{Householder}} \DeclareMathOperator*{\rang}{rang} \newcommand{\schur}{\mathrm{Schur}} \newcommand{\singuliere}{\mathrm{DVS}} \newcommand{\convexe}{\mathrm{Convexe}} \newcommand{\petito}[1]{o\left(#1\right)} \newcommand{\grando}[1]{O\left(#1\right)} \)

\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)

\label{chap:extremaReels}

1. Dépendances

  • Chapitre \ref{chap:reel} : Les nombres réels
  • Chapitre \ref{chap:interval} : Les intervalles

2. Existence

Soit un sous-ensemble \(A \subseteq \setR\) avec \(A \ne \emptyset\). Pour tout réel \(x \in A\), on note \(Q(x)\) le sous-ensemble de rationnels associé.

  • Supposons que \(A\) soit majoré (\(\major A \ne \emptyset\)). Choisissons \(\mu \in \major A\) et considérons le sous-ensemble de rationnels \(Q(\mu)\) associé à \(\mu\). Comme \(\mu \ge A\) et comme l'ordre \(\le\) est dérivé de l'ordre inclusif sur les sous-ensembles de rationnels associés, on a \(Q(x) \subseteq Q(\mu)\) pour tout \(x \in A\). On en conclut que l'union \(S\) des \(Q(x)\) est inclue dans \(Q(\mu)\) :

\[S = \bigcup_{x \in A} Q(x) \subseteq Q(\mu)\]

Comme \(Q(\mu)\) est majoré, on peut trouver un rationnel \(\sigma\) tel que :

\[S \subseteq Q(\mu) \le \sigma\]

Donc \(S \le \sigma\), ce qui prouve que \(S\) est majoré. D'un autre coté, comme les \(Q(x)\) ne sont pas vides, il est clair que leur union \(S\) n'est pas vide.

Soit \(\alpha \in S\) et le rationnel \(\beta \in \setQ\) vérifiant \(\beta \strictinferieur \alpha\). On peut trouver un \(x \in A\) tel que \(\alpha \in Q(x)\). Par définition des sous-ensembles de rationnels associés aux réels, on a \(\beta \in Q(x)\), donc \(\beta\) appartient à l'union \(S\). Enfin, si \(S\) admettait un maximum \(M\), on on pourrait trouver un \(x \in A\) tel que \(M \in Q(x)\). On aurait aussi \(Q(x) \subseteq S \le M\), et donc \(Q(x) \le M\), ce qui contredit la définition des réels. On en conclut que l'ensemble \(S\) correspond à un réel \(s\). Mais on sait que le supremum inclusif est égal à l'union :

\[S = \sup_\subseteq \{ Q(x) \in \sousens(\setQ) : x \in A \} \]

L'ordre \(\le\) des réels étant dérivé de \(\subseteq\), on en conclut que le supremum de \(A\) existe et que :

\[s = \sup A\]

Nous avonc donc prouvé que tout sous-ensemble \(A\) non vide majoré de \(\setR\) admet un supremum.

  • Supposons que \(A\) soit minoré (\(\minor A \ne \emptyset\)). Choisissons \(\lambda \in \minor A\) et posons :

\[-A = \{ -x \in \setR : x \in A \}\]

Comme \(\lambda \le x\) pour tout \(x \in A\), on a \(-\lambda \ge -x\) et \(-\lambda \in \major(-A) \ne \emptyset\). L'ensemble non vide \(-A\) est donc majoré et admet un supremum \(S = \sup(-A)\). On a \(S \ge -x\) pour tout \(x \in A\), donc \(I = -S \le x\) et \(I \in \minor A\). Choisissons \(\alpha \in \minor A\). On a \(\alpha \le x\) pour tout \(x \in A\), d'où \(-\alpha \ge -x\) et \(-\alpha \in \major(-A)\). On en déduit que \(-A \le S \le -\alpha\), c'est-à-dire \(\alpha \le I \le A\). Le réel \(I = -S\) est donc l'infimum de \(A\) :

\[\inf A = - \sup(-A)\]

Nous avonc donc prouvé que tout sous-ensemble \(A\) non vide minoré de \(\setR\) admet un infimum.

3. Adhérence et distance

Soit \(A \subseteq \setR\) et \(r \in \setR\). Soit l'ensemble :

\[D = \{ \distance(r,x) : x \in A \}\]

  • Supposons que \(r \in \adh A\). On a alors :

\[\distance(r,A) = \inf D = 0\]

Choisissons un réel \(\delta \strictsuperieur 0\). Si on avait \(\distance(x,r) \strictsuperieur \delta\) pour tout \(x \in A\), on aurait \(0 \strictinferieur \delta \le D\), ce qui contredit l'hypothèse d'infimum nul. Donc, pour tout \(\delta \strictsuperieur 0\), on peut trouver un \(x \in A\) tel que \(\distance(x,r) \le \delta\).

  • Réciproquement, supposons que pour tout réel $δ \strictsuperieur

0$, on puisse trouver un \(x \in A\) tel que \(d = \distance(x,r) \le \delta\). Dans ce cas, on a \(\delta \le d \in D\). On en conclut que \(\delta \notin \minor D\). Par contre, si \(\delta \le 0\), on a \(\delta \le 0 \le D\) par positivité de la distance. On en conclut que \(\minor D = \intervallesemiouvertgauche{-\infty}{0}\), d'où :

\[\distance(r,A) = \inf D = \max \minor D = \max \intervallesemiouvertgauche{-\infty}{0} = 0\]

et \(r \in \adh A\).

4. Eloignement

  • Supposons à présent que le supremum \(S = \sup A\) existe et que l'on puisse trouver un \(\delta \strictsuperieur 0\) tel que :

\[\distance(S,x) = \abs{S - x} = S - x \ge \delta\]

pour tout \(x \in A\). Soit alors :

\[y = S - \frac{\delta}{2}\]

On voit que \(S \strictsuperieur y\) et que :

\[y - x = (y - S) + (S - x) \ge - \frac{\delta}{2} + \delta = \frac{\delta}{2} \strictsuperieur 0\]

pour tout \(x \in A\), c'est-à-dire \(y \ge A\). On a donc \(S \strictsuperieur y \ge A\), ce qui contredit la définition du supremum. Pour tout \(\delta \strictsuperieur 0\), on peut donc trouver un \(x \in A\) tel que \(\distance(S,x) \le \delta\). On en conclut que \(\distance(S,A) = 0\), c'est-à-dire :

\[\sup A \in \adh A\]

  • Soit l'ensemble \(A\) admettant un infimum \(I = \inf A\). Supposons que l'on puisse trouver un \(\delta \strictsuperieur 0\) tel que :

\[\distance(I,x) = \abs{I - x} = x - I \ge \delta\]

pour tout \(x \in A\). Soit alors :

\[y = I + \frac{\delta}{2}\]

On voit que \(I \strictinferieur y\) et que :

\[x - y = (x - I) + (I - y) \ge \delta - \frac{\delta}{2} = \frac{\delta}{2} \strictsuperieur 0\]

pour tout \(x \in A\), c'est-à-dire \(y \le A\). On a donc \(I \strictinferieur y \le A\), ce qui contredit la définition de l'infimum. Pour tout \(\delta \strictsuperieur 0\), on peut donc trouver un \(x \in A\) tel que \(\distance(I,x) \le \delta\). On en conclut que \(\distance(I,A) = 0\), c'est-à-dire :

\[\inf A \in \adh A\]

Auteur: chimay

Created: 2025-10-21 mar 15:51

Validate