Eclats de vers : Matemat : Équations aux dérivées partitielles (EDP)

Index mathématique

Retour à l’accueil

Table des matières

\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)

\label{chap:pde}

1. Courbes caractéristiques

Soit \(u \in F = \continue^1(\setR^2,\setR)\) et l'équation aux dérivées partielles à résoudre sur \(\Omega\subseteq\setR^2\) :

\[a(x,y,u) \ u_x(x,y) + b(x,y,u) \ u_y(x,y) = c(x,y,u)\]

où nous introduisons les notations :

\( u_x(x,y) = \deriveepartielle{u}{x}(x,y) \)

\( u_y(x,y) = \deriveepartielle{u}{y}(x,y) \)

Les coefficients \(a,b,c\) sont en général des fonctions de \(x,y,u\) mais ne peuvent pas dépendre de \(u_x\) ni de \(u_y\). Soit à présent la courbe \(\Gamma\) définie par :

\[\Gamma = \{ \left(w_x(t),w_y(t)\right) : t \in\setR \}\]

où \(w_x\) et \(w_y\) sont des fonctions dérivables. Définissons la restriction de \(u\) à \(\Gamma\) :

\[\varphi(t) = u\left(w_x(t),w_y(t)\right)\]

Si on s'arrange pour que :

\( \OD{w_x}{t}(t) = a(w_x(t),w_y(t),u(w_x(t),w_y(t))) \)

\( \OD{w_y}{t}(t) = b(w_x(t),w_y(t),u(w_x(t),w_y(t))) \)

On a alors :

\[\OD{\varphi}{t} = u_x \ a + u_y \ b = c\]

Définissons alors :

\[f : (t,u) \mapsto c\left(w_x(t),w_y(t),u\right)\]

On a :

\[\OD{\varphi}{t}(t) = f(t,u(t))\]

qui est une équation différentielle ordinaire en \(t\). On peut donc connaître \(\varphi\) et donc \(u\) sur \(\Gamma\) si on ajoute la condition initiale :

\[\varphi(0) = u_0\]

On dit alors que \(\Gamma\) est une courbe caractéristique de l'équation aux dérivées partielles.

2. Fonction de Green

Soit un espace fonctionnel \(F \subseteq \Leb^2(\setR^n,\setR)\) et une forme \(\forme{}{} : F^D \times F \mapsto \setR\) à laquelle on associe par abus de notation :

\[\int_A u(x) \cdot v(x) \ dx = \forme{u}{v}\]

où \(A \subseteq \setR^n\).

Soit un opérateur \(L : F \mapsto \Leb^2(\setR^n,\setR)\) qui vérifie :

\[\forme{u}{L(v)} = \forme{L(u)}{v}\]

pour tout \(u,v\in F\). On dit d'un tel opérateur qu'il est auto-adjoint.

Nous nous intéressons à l'équation différentielle :

\[L(u) = f\]

où \(f \in F\).

Introduisons la distribution \(\delta\) de Dirac :

\[\int_A \delta(x-a) \ f(x) \ dx = f(a)\]

et définissons la famille de solutions \(v_x\) telles que :

\[L(v_x)(y)=\delta(y-x)\]

On peut alors définir la fonction de Green \(G\) :

\[G(x,y)=v_x(y)\]

Mais les propriétés de \(L\) nous permettent d'écrire :

\[\forme{L(v_x)}{u} = \forme{v_x}{L(u)}\]

Si \(u\) est la solution de \(L(u) = f\), l'équation précédente peut se formeuler comme :

\[\int_A \delta(y-x) \ u(y) \ dy = \int_A v_x(y) \ f(y) \ dy\]

et finalement :

\[u(x) = \int_A G(x,y) \ f(y) \ dy\]

2.1. Exemple d'opérateur auto-adjoint

Comme exemple d'opérateur auto-adjoint, citons :

\[L : u \mapsto \lapl u = \sum_i \dfdxdx{u}{x_i}\]

Auteur: chimay

Created: 2025-11-30 dim 13:45

Validate