Eclats de vers : Matemat : Distance
Table des matières
\( \newcommand{\parentheses}[1]{\left(#1\right)} \newcommand{\crochets}[1]{\left[#1\right]} \newcommand{\accolades}[1]{\left\{#1\right\}} \newcommand{\ensemble}[1]{\left\{#1\right\}} \newcommand{\identite}{\mathrm{Id}} \newcommand{\indicatrice}{\boldsymbol{\delta}} \newcommand{\dirac}{\delta} \newcommand{\moinsun}{{-1}} \newcommand{\inverse}{\ddagger} \newcommand{\pinverse}{\dagger} \newcommand{\topologie}{\mathfrak{T}} \newcommand{\ferme}{\mathfrak{F}} \newcommand{\img}{\mathbf{i}} \newcommand{\binome}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\canonique}{\mathfrak{c}} \newcommand{\tenseuridentite}{\boldsymbol{\mathcal{I}}} \newcommand{\permutation}{\boldsymbol{\epsilon}} \newcommand{\matriceZero}{\mathfrak{0}} \newcommand{\matriceUn}{\mathfrak{1}} \newcommand{\christoffel}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\lagrangien}{\mathfrak{L}} \newcommand{\sousens}{\mathfrak{P}} \newcommand{\partition}{\mathrm{Partition}} \newcommand{\tribu}{\mathrm{Tribu}} \newcommand{\topologies}{\mathrm{Topo}} \newcommand{\setB}{\mathbb{B}} \newcommand{\setN}{\mathbb{N}} \newcommand{\setZ}{\mathbb{Z}} \newcommand{\setQ}{\mathbb{Q}} \newcommand{\setR}{\mathbb{R}} \newcommand{\setC}{\mathbb{C}} \newcommand{\corps}{\mathbb{K}} \newcommand{\boule}{\mathfrak{B}} \newcommand{\intervalleouvert}[2]{\left] #1 , #2 \right[} \newcommand{\intervallesemiouvertgauche}[2]{ \left] #1 , #2 \right]} \newcommand{\intervallesemiouvertdroite}[2]{\left[ #1 , #2 \right[ } \newcommand{\fonction}{\mathbb{F}} \newcommand{\bijection}{\mathrm{Bij}} \newcommand{\polynome}{\mathrm{Poly}} \newcommand{\lineaire}{\mathrm{Lin}} \newcommand{\continue}{\mathrm{Cont}} \newcommand{\homeomorphisme}{\mathrm{Hom}} \newcommand{\etagee}{\mathrm{Etagee}} \newcommand{\lebesgue}{\mathrm{Leb}} \newcommand{\lipschitz}{\mathrm{Lip}} \newcommand{\suitek}{\mathrm{Suite}} \newcommand{\matrice}{\mathbb{M}} \newcommand{\krylov}{\mathrm{Krylov}} \newcommand{\tenseur}{\mathbb{T}} \newcommand{\essentiel}{\mathfrak{E}} \newcommand{\relation}{\mathrm{Rel}} \DeclareMathOperator*{\strictinferieur}{\ < \ } \DeclareMathOperator*{\strictsuperieur}{\ > \ } \DeclareMathOperator*{\ensinferieur}{\eqslantless} \DeclareMathOperator*{\enssuperieur}{\eqslantgtr} \DeclareMathOperator*{\esssuperieur}{\gtrsim} \DeclareMathOperator*{\essinferieur}{\lesssim} \newcommand{\essegal}{\eqsim} \newcommand{\union}{\ \cup \ } \newcommand{\intersection}{\ \cap \ } \newcommand{\opera}{\divideontimes} \newcommand{\autreaddition}{\boxplus} \newcommand{\autremultiplication}{\circledast} \newcommand{\commutateur}[2]{\left[ #1 , #2 \right]} \newcommand{\convolution}{\circledcirc} \newcommand{\correlation}{\ \natural \ } \newcommand{\diventiere}{\div} \newcommand{\modulo}{\bmod} \DeclareMathOperator*{\pgcd}{pgcd} \DeclareMathOperator*{\ppcm}{ppcm} \newcommand{\produitscalaire}[2]{\left\langle #1 \vert #2 \right\rangle} \newcommand{\scalaire}[2]{\left\langle #1 \| #2 \right\rangle} \newcommand{\braket}[3]{\left\langle #1 \vert #2 \vert #3 \right\rangle} \newcommand{\orthogonal}{\bot} \newcommand{\forme}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\biforme}[3]{\left\langle #1 , #2 , #3 \right\rangle} \newcommand{\contraction}[3]{\left\langle #1 \odot #3 \right\rangle_{#2}} \newcommand{\dblecont}[5]{\left\langle #1 \vert #3 \vert #5 \right\rangle_{#2,#4}} \DeclareMathOperator*{\major}{major} \DeclareMathOperator*{\minor}{minor} \DeclareMathOperator*{\maxim}{maxim} \DeclareMathOperator*{\minim}{minim} \DeclareMathOperator*{\argument}{arg} \DeclareMathOperator*{\argmin}{arg\ min} \DeclareMathOperator*{\argmax}{arg\ max} \DeclareMathOperator*{\supessentiel}{ess\ sup} \DeclareMathOperator*{\infessentiel}{ess\ inf} \newcommand{\dual}{\star} \newcommand{\distance}{\mathfrak{dist}} \newcommand{\norme}[1]{\left\| #1 \right\|} \newcommand{\normetrois}[1]{\left|\left\| #1 \right\|\right|} \DeclareMathOperator*{\adh}{adh} \DeclareMathOperator*{\interieur}{int} \newcommand{\frontiere}{\partial} \DeclareMathOperator*{\image}{im} \DeclareMathOperator*{\domaine}{dom} \DeclareMathOperator*{\noyau}{ker} \DeclareMathOperator*{\support}{supp} \DeclareMathOperator*{\signe}{sign} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\unsur}[1]{\frac{1}{#1}} \newcommand{\arrondisup}[1]{\lceil #1 \rceil} \newcommand{\arrondiinf}[1]{\lfloor #1 \rfloor} \DeclareMathOperator*{\conjugue}{conj} \newcommand{\conjaccent}[1]{\overline{#1}} \DeclareMathOperator*{\division}{division} \newcommand{\difference}{\boldsymbol{\Delta}} \newcommand{\differentielle}[2]{\mathfrak{D}^{#1}_{#2}} \newcommand{\OD}[2]{\frac{d #1}{d #2}} \newcommand{\OOD}[2]{\frac{d^2 #1}{d #2^2}} \newcommand{\NOD}[3]{\frac{d^{#3} #1}{d #2^{#3}}} \newcommand{\deriveepartielle}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\PD}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dblederiveepartielle}[2]{\frac{\partial^2 #1}{\partial #2 \partial #2}} \newcommand{\dfdxdy}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\dfdxdx}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\gradient}{\mathbf{\nabla}} \newcommand{\combilin}[1]{\mathrm{span}\{ #1 \}} \DeclareMathOperator*{\trace}{tr} \newcommand{\proba}{\mathbb{P}} \newcommand{\probaof}[1]{\mathbb{P}\left[#1\right]} \newcommand{\esperof}[1]{\mathbb{E}\left[#1\right]} \newcommand{\cov}[2]{\mathrm{cov} \left( #1 , #2 \right) } \newcommand{\var}[1]{\mathrm{var} \left( #1 \right) } \newcommand{\rand}{\mathrm{rand}} \newcommand{\variation}[1]{\left\langle #1 \right\rangle} \DeclareMathOperator*{\composante}{comp} \DeclareMathOperator*{\bloc}{bloc} \DeclareMathOperator*{\ligne}{ligne} \DeclareMathOperator*{\colonne}{colonne} \DeclareMathOperator*{\diagonale}{diag} \newcommand{\matelementaire}{\mathrm{Elem}} \DeclareMathOperator*{\matpermutation}{permut} \newcommand{\matunitaire}{\mathrm{Unitaire}} \newcommand{\gaussjordan}{\mathrm{GaussJordan}} \newcommand{\householder}{\mathrm{Householder}} \DeclareMathOperator*{\rang}{rang} \newcommand{\schur}{\mathrm{Schur}} \newcommand{\singuliere}{\mathrm{DVS}} \newcommand{\convexe}{\mathrm{Convexe}} \newcommand{\petito}[1]{o\left(#1\right)} \newcommand{\grando}[1]{O\left(#1\right)} \)
\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)
\label{chap:distances}
1. Dépendances
- Chapitre \ref{chap:algebre} : Les structures algébriques
- Chapitre \ref{chap:ordres} : Les ordres
- Chapitre \ref{chap:topologies} : Les topologies
2. Définition
Afin de généraliser le plus possible la notion de distance au sens usuel, nous allons nous poser la question : quelles sont les caractéristiques fondamentales d'une distance ? Nous en déduirons les propriétés que doit respecter une distance générique.
Soit l'ensemble \(\Omega\), un corps \(\corps\) et une fonction \(\distance : \Omega \times \Omega \to \corps\) représentant une distance entre deux éléments de l'ensemble \(\Omega\). Choisissons des éléments quelconques \(x,y,z \in \Omega\). Au sens usuel, une distance entre deux objets est clairement positive :
\[\distance(x,y) \ge 0\]
Elle est également symétrique puisqu'on obtient la même distance lorsqu'on intervertit les objets :
\[\distance(x,y) = \distance(y,x)\]
Par ailleurs , la distance entre deux objets identiques doit évidemment être nulle :
\[\distance(x,x) = 0\]
On impose également que le seul élément \(y\) qui puisse être à distance nulle de \(x\) soit l'élément \(x\) lui-même :
\[\distance(x,y) = 0 \ \Rightarrow \ x = y\]
Enfin, il est toujours plus court d'aller directement de \(x\) à \(z\) plutôt que de passer par une étape \(y\). On a donc l'inégalité triangulaire :
\[\distance(x,z) \le \distance(x,y) + \distance(y,z)\]
2.1. Remarque
Parfois, au lieu d'imposer l'égalité de deux éléments situés à distance nulle l'un de l'autre, on impose juste l'équivalence suivant un critère prédéfini :
\[\distance(x,y) = 0 \ \Rightarrow \ x \equiv y\]
3. Distance à un ensemble
Quelle est la distance à parcourir d'une ville donnée lorsqu'on désire se rendre dans un certain pays ? On a envie de dire que la distance est parcourue dès que l'on a atteint la frontière du pays en question. Comme on choisit généralement le chemin le plus court pour arriver à destination, on se rend compte que la distance ville - pays est le minimum des distances entre la ville et tous les points appartenant au pays.
Maintenant, remplaçons la ville par un élément \(x \in \Omega\) et le pays par un ensemble \(A \subseteq \Omega\). On définit simplement la distance de \(x\) à \(A\) comme étant l'infimum des distances de \(x\) à un point quelconque de \(A\) :
\[\distance(x,A) = \inf_{a \in A} \distance(x,a) = \inf \{ \distance(x,a) : a \in A \}\]
3.1. Inclusion
Si \(B \subseteq A\), on en déduit directement que :
\[\distance(a,A) \le \distance(a,B)\]
3.2. Notation
On note aussi :
\[\distance(A,a) = \distance(a,A)\]
3.3. Self-distance
Soit \(a \in A\). Comme \(\distance(a,a) = 0\) et que la distance \(\distance(a,b) \ge 0\) pour tout \(b \in A\), on voit que le choix \(b = a\) minimise \(\distance(a,b)\) sur \(A\). Donc :
\[\distance(a,A) = 0\]
pour tout élément \(a \in A\).
4. Distance inter-ensembles
La distance entre deux ensembles \(A\) et \(B\) est l'infimum des distances possibles entre les couples \((a,b) \in A \times B\) :
\[\distance(A,B) = \inf \{ \distance(a,b) : (a,b) \in A \times B \}\]
On a bien évidemment :
\[\distance(A,B) = \inf \{ \distance(a,B) : a \in A \} = \inf \{ \distance(A,b) : b \in B \}\]
5. Boules
Les boules sont la généralisation des disques et des sphères. Or, ce qui caractèrise ces entités, c'est qu'elle incluent des points \(x\) vérifiant \(\distance(x,c) \le r\), où \(c\) est le centre et \(r\) le rayon. On définit par conséquent la boule fermée \(\boule[c,r]\) par :
\[\boule[c,r] = \{ x \in \Omega : \distance(x,c) \le r \}\]
où \(r\) est un réel positif.
Si l'on veut que la distance soit strictement inférieure à \(r\), on considérera plutôt la définition de la boule ouverte :
\[\boule(c,r) = \{ x \in \Omega : \distance(x,c) \strictinferieur r \}\]
6. Topologie métrique
La topologie usuelle définie sur les ensembles munis d'une distance est celle générée par les boules ouvertes, soit les éléments de la collection :
\[\mathcal{B} = \{ \boule(c,r) : c \in \Omega, \ r \in \corps, \ r \strictsuperieur 0 \}\]
La topologie métrique \(\topologie\) s'écrit donc :
\[\topologie = \topologies(\mathcal{B},\Omega)\]
Toute union de boules ouvertes est donc un ouvert.
7. Intérieur
Soit \(A \subseteq \Omega\).
- Soit \(x \in \interieur A\). L'élément \(x\) appartient donc à un ouvert \(U\) contenu dans \(A\). Comme \(x \in U\), on a \(U \ne \emptyset\). On en conclut que \(U\) doit être une union de boules ouvertes. On peut donc trouver un \(a \in U\) et un \(\delta \strictsuperieur 0\) tel que \(x \in \boule(a,\delta) \subseteq U\). Comme \(d = \distance(a,x) \strictinferieur \delta\), on a \(\delta - d \strictsuperieur 0\). Soit \(\epsilon = \delta - d\) et \(y \in \boule(x,\epsilon)\). On a :
\[\distance(a,y) \le \distance(a,x) + \distance(x,y) \strictinferieur d + \epsilon = \delta\]
Donc \(\boule(x,\epsilon) \subseteq \boule(a,\delta) \subseteq U \subseteq A\) et \(\distance( x , \Omega \setminus A ) \strictsuperieur 0\).
- Réciproquement, si \(z \in \Omega\) vérifie \(d = \distance( x , \Omega \setminus A ) \strictsuperieur 0\), on a \(z \in \boule(z,d/2) \subseteq A\). L'élément \(z\) appartient donc à un ouvert contenu dans \(A\). Il appartient donc à l'union des ouverts inclus dans \(A\), c'est-à-dire \(z \in \interieur A\).
On conclut de ce qui précède que :
\[\interieur A = \{ x \in \Omega : \distance( x , \Omega \setminus A ) \strictsuperieur 0 \}\]
8. Adhérence
On voit que :
\[\interieur (\Omega \setminus A) = \{ x \in \Omega : \distance(x,A) \strictsuperieur 0 \}\]
Le complémentaire de cet ensemble est bien sur constitué des \(x \in \Omega\) vérifiant \(\distance(x,A) = 0\). Or, nous avons vu que ce complémentaire n'est rien d'autre que l'adhérence de \(A\) :
\[\adh A = \{ x \in \Omega : \distance(x,A) = 0 \}\]
9. Adhérence carrée
Soit \(x \in \Omega\), \(A \subseteq \Omega\) et :
\( B = \adh A \)
\( C = \adh B = \adh \adh A \)
Soit \(c \in C\). Pour tout \(\epsilon \in \corps\) avec \(\epsilon \strictsuperieur 0\), on peut trouver \(b \in B\) tel que :
\[\distance(c,b) \le \epsilon\]
et ensuite \(a \in A\) tel que :
\[\distance(b,a) \le \epsilon\]
On a donc :
\[\distance(c,a) \le \distance(c,b) + \distance(b,a) \le \epsilon + \epsilon\]
L'infimum est par conséquent nul :
\[\distance(c,A) = \inf_{a \in A} \distance(c,a) = 0\]
On en déduit que \(c \in \adh A\). Nous venons de montrer que :
\[\adh \adh A \subseteq \adh A\]
Mais comme l'inverse est également vrai, on a :
\[\adh \adh A = \adh A\]