Eclats de vers : Matemat : Différentielles et matrices

Index des Grimoires

Retour à l’accueil

Table des matières

\( \newcommand{\parentheses}[1]{\left(#1\right)} \newcommand{\crochets}[1]{\left[#1\right]} \newcommand{\accolades}[1]{\left\{#1\right\}} \newcommand{\ensemble}[1]{\left\{#1\right\}} \newcommand{\identite}{\mathrm{Id}} \newcommand{\indicatrice}{\boldsymbol{\delta}} \newcommand{\dirac}{\delta} \newcommand{\moinsun}{{-1}} \newcommand{\inverse}{\ddagger} \newcommand{\pinverse}{\dagger} \newcommand{\topologie}{\mathfrak{T}} \newcommand{\ferme}{\mathfrak{F}} \newcommand{\img}{\mathbf{i}} \newcommand{\binome}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\canonique}{\mathfrak{c}} \newcommand{\tenseuridentite}{\boldsymbol{\mathcal{I}}} \newcommand{\permutation}{\boldsymbol{\epsilon}} \newcommand{\matriceZero}{\mathfrak{0}} \newcommand{\matriceUn}{\mathfrak{1}} \newcommand{\christoffel}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\lagrangien}{\mathfrak{L}} \newcommand{\sousens}{\mathfrak{P}} \newcommand{\partition}{\mathrm{Partition}} \newcommand{\tribu}{\mathrm{Tribu}} \newcommand{\topologies}{\mathrm{Topo}} \newcommand{\setB}{\mathbb{B}} \newcommand{\setN}{\mathbb{N}} \newcommand{\setZ}{\mathbb{Z}} \newcommand{\setQ}{\mathbb{Q}} \newcommand{\setR}{\mathbb{R}} \newcommand{\setC}{\mathbb{C}} \newcommand{\corps}{\mathbb{K}} \newcommand{\boule}{\mathfrak{B}} \newcommand{\intervalleouvert}[2]{\left] #1 , #2 \right[} \newcommand{\intervallesemiouvertgauche}[2]{ \left] #1 , #2 \right]} \newcommand{\intervallesemiouvertdroite}[2]{\left[ #1 , #2 \right[ } \newcommand{\fonction}{\mathbb{F}} \newcommand{\bijection}{\mathrm{Bij}} \newcommand{\polynome}{\mathrm{Poly}} \newcommand{\lineaire}{\mathrm{Lin}} \newcommand{\continue}{\mathrm{Cont}} \newcommand{\homeomorphisme}{\mathrm{Hom}} \newcommand{\etagee}{\mathrm{Etagee}} \newcommand{\lebesgue}{\mathrm{Leb}} \newcommand{\lipschitz}{\mathrm{Lip}} \newcommand{\suitek}{\mathrm{Suite}} \newcommand{\matrice}{\mathbb{M}} \newcommand{\krylov}{\mathrm{Krylov}} \newcommand{\tenseur}{\mathbb{T}} \newcommand{\essentiel}{\mathfrak{E}} \newcommand{\relation}{\mathrm{Rel}} \DeclareMathOperator*{\strictinferieur}{\ < \ } \DeclareMathOperator*{\strictsuperieur}{\ > \ } \DeclareMathOperator*{\ensinferieur}{\eqslantless} \DeclareMathOperator*{\enssuperieur}{\eqslantgtr} \DeclareMathOperator*{\esssuperieur}{\gtrsim} \DeclareMathOperator*{\essinferieur}{\lesssim} \newcommand{\essegal}{\eqsim} \newcommand{\union}{\ \cup \ } \newcommand{\intersection}{\ \cap \ } \newcommand{\opera}{\divideontimes} \newcommand{\autreaddition}{\boxplus} \newcommand{\autremultiplication}{\circledast} \newcommand{\commutateur}[2]{\left[ #1 , #2 \right]} \newcommand{\convolution}{\circledcirc} \newcommand{\correlation}{\ \natural \ } \newcommand{\diventiere}{\div} \newcommand{\modulo}{\bmod} \DeclareMathOperator*{\pgcd}{pgcd} \DeclareMathOperator*{\ppcm}{ppcm} \newcommand{\produitscalaire}[2]{\left\langle #1 \vert #2 \right\rangle} \newcommand{\scalaire}[2]{\left\langle #1 \| #2 \right\rangle} \newcommand{\braket}[3]{\left\langle #1 \vert #2 \vert #3 \right\rangle} \newcommand{\orthogonal}{\bot} \newcommand{\forme}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\biforme}[3]{\left\langle #1 , #2 , #3 \right\rangle} \newcommand{\contraction}[3]{\left\langle #1 \odot #3 \right\rangle_{#2}} \newcommand{\dblecont}[5]{\left\langle #1 \vert #3 \vert #5 \right\rangle_{#2,#4}} \DeclareMathOperator*{\major}{major} \DeclareMathOperator*{\minor}{minor} \DeclareMathOperator*{\maxim}{maxim} \DeclareMathOperator*{\minim}{minim} \DeclareMathOperator*{\argument}{arg} \DeclareMathOperator*{\argmin}{arg\ min} \DeclareMathOperator*{\argmax}{arg\ max} \DeclareMathOperator*{\supessentiel}{ess\ sup} \DeclareMathOperator*{\infessentiel}{ess\ inf} \newcommand{\dual}{\star} \newcommand{\distance}{\mathfrak{dist}} \newcommand{\norme}[1]{\left\| #1 \right\|} \newcommand{\normetrois}[1]{\left|\left\| #1 \right\|\right|} \DeclareMathOperator*{\adh}{adh} \DeclareMathOperator*{\interieur}{int} \newcommand{\frontiere}{\partial} \DeclareMathOperator*{\image}{im} \DeclareMathOperator*{\domaine}{dom} \DeclareMathOperator*{\noyau}{ker} \DeclareMathOperator*{\support}{supp} \DeclareMathOperator*{\signe}{sign} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\unsur}[1]{\frac{1}{#1}} \newcommand{\arrondisup}[1]{\lceil #1 \rceil} \newcommand{\arrondiinf}[1]{\lfloor #1 \rfloor} \DeclareMathOperator*{\conjugue}{conj} \newcommand{\conjaccent}[1]{\overline{#1}} \DeclareMathOperator*{\division}{division} \newcommand{\difference}{\boldsymbol{\Delta}} \newcommand{\differentielle}[2]{\mathfrak{D}^{#1}_{#2}} \newcommand{\OD}[2]{\frac{d #1}{d #2}} \newcommand{\OOD}[2]{\frac{d^2 #1}{d #2^2}} \newcommand{\NOD}[3]{\frac{d^{#3} #1}{d #2^{#3}}} \newcommand{\deriveepartielle}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\PD}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dblederiveepartielle}[2]{\frac{\partial^2 #1}{\partial #2 \partial #2}} \newcommand{\dfdxdy}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\dfdxdx}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\gradient}{\mathbf{\nabla}} \newcommand{\combilin}[1]{\mathrm{span}\{ #1 \}} \DeclareMathOperator*{\trace}{tr} \newcommand{\proba}{\mathbb{P}} \newcommand{\probaof}[1]{\mathbb{P}\left[#1\right]} \newcommand{\esperof}[1]{\mathbb{E}\left[#1\right]} \newcommand{\cov}[2]{\mathrm{cov} \left( #1 , #2 \right) } \newcommand{\var}[1]{\mathrm{var} \left( #1 \right) } \newcommand{\rand}{\mathrm{rand}} \newcommand{\variation}[1]{\left\langle #1 \right\rangle} \DeclareMathOperator*{\composante}{comp} \DeclareMathOperator*{\bloc}{bloc} \DeclareMathOperator*{\ligne}{ligne} \DeclareMathOperator*{\colonne}{colonne} \DeclareMathOperator*{\diagonale}{diag} \newcommand{\matelementaire}{\mathrm{Elem}} \DeclareMathOperator*{\matpermutation}{permut} \newcommand{\matunitaire}{\mathrm{Unitaire}} \newcommand{\gaussjordan}{\mathrm{GaussJordan}} \newcommand{\householder}{\mathrm{Householder}} \DeclareMathOperator*{\rang}{rang} \newcommand{\schur}{\mathrm{Schur}} \newcommand{\singuliere}{\mathrm{DVS}} \newcommand{\convexe}{\mathrm{Convexe}} \newcommand{\petito}[1]{o\left(#1\right)} \newcommand{\grando}[1]{O\left(#1\right)} \)

\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)

\label{chap:diffmatr}

1. Applications linéaires

Soit \(A \in \matrice(\setR,m,n)\). Considérons la fonction \(\mathcal{A} : \setR^m \times \setR^n \mapsto \setR\) définie par :

\[\mathcal{A}(x) = A \cdot x\]

En terme de composantes, on a :

\[\mathcal{A}_i(x) = \sum_j A_{ij} \cdot x_j\]

Les dérivées s'écrivent :

\[\deriveepartielle{\mathcal{A}_i}{x_k}(x) = A_{ik}\]

On a donc :

\[\deriveepartielle{}{x}(A \cdot x) = A\]

2. Formes linéaires

Soit \(u \in \setR^n\). Considérons la forme linéaire \(\varphi : \setR^n \mapsto \setR\) définie par :

\[\varphi(x) = x^\dual \cdot u\]

En terme de composantes, on a :

\[\varphi(x) = \sum_i x_i \cdot u_i\]

Les dérivées s'écrivent :

\[\deriveepartielle{\varphi}{x_k}(x) = u_i\]

On a donc :

\[\deriveepartielle{}{x}(x^\dual \cdot u) = u\]

Comme \(u^\dual \cdot x = x^\dual \cdot u\), on a aussi :

\[\deriveepartielle{}{x}(u^\dual \cdot x) = u\]

3. Formes bilinéaires

Soit à présent \(A \in \matrice(\setR,m,n)\). Considérons la forme bilinéaire \(\vartheta : \setR^m \times \setR^n \mapsto \setR\) définie par :

\[\vartheta(x,y) = x^\dual \cdot A \cdot y\]

En terme de composantes, on a :

\[\vartheta(x,y) = \sum_{i,j} x_i \cdot A_{ij} \cdot y_j\]

Les dérivées s'écrivent :

\( \deriveepartielle{\vartheta}{x_k}(x,y) = \sum_j A_{kj} \cdot y_j \\ \)

\( \deriveepartielle{\vartheta}{y_k}(x,y) = \sum_i x_i \cdot A_{ik} \)

On a donc :

\( \deriveepartielle{}{x}(x^\dual \cdot A \cdot y) = A \cdot y \\ \)

\( \deriveepartielle{}{y}(x^\dual \cdot A \cdot y) = A^\dual \cdot x \)

Les dérivées secondes s'en déduisent alors :

\( \dfdxdy{}{x}{x}(x^\dual \cdot A \cdot y) = 0 \\ \)

\( \dfdxdy{}{y}{y}(x^\dual \cdot A \cdot y) = 0 \\ \)

\( \dfdxdy{}{y}{x}(x^\dual \cdot A \cdot y) = A \)

4. Formes quadratiques

Soit à présent \(A \in \matrice(\setR,n,n)\). Considérons la forme quadratique \(\mathcal{Q} : \setR^m \times \setR^n \mapsto \setR\) définie par :

\[\mathcal{Q}(x) = x^\dual \cdot A \cdot x\]

En terme de composantes, on a :

\[\mathcal{Q}(x) = \sum_{i,j} x_i \cdot A_{ij} \cdot x_j\]

Les dérivées s'écrivent :

\begin{align} \deriveepartielle{\mathcal{Q}}{x_k}(x) &= \sum_j A_{kj} \cdot x_j + \sum_i x_i \cdot A_{ik} \) \( &= \sum_i (A_{ki} + A_{ik}) \cdot x_i \end{align}

On a donc :

\[\deriveepartielle{}{x}(x^\dual \cdot A \cdot x) = (A + A^\dual) \cdot x\]

La dérivée seconde est alors immédiate :

\[\dfdxdy{}{x}{x}(x^\dual \cdot A \cdot x) = A + A^\dual\]

Un cas fréquent est celui d'une matrice \(H\) hermitienne (\(H^\dual = H\)). On a alors :

\[\deriveepartielle{}{x}(x^\dual \cdot H \cdot x) = 2 \cdot H \cdot x\]

et :

\[\dfdxdy{}{x}{x}(x^\dual \cdot H \cdot x) = 2 \cdot H\]

5. Produit matriciel

Soient les fonctions \(A : \setR \mapsto \matrice(\setR,m,n)\) et \(B : \setR \mapsto \matrice(\setR,n,p)\) qui, à chaque réel \(t\), associent des matrices de composantes réelles. Nous allons tenter de trouver une expression de la dérivée du produit matriciel \(A \cdot B\). Les propriétés des différentielles nous permettent d'écrire :

\[\partial \sum_{k = 1}^n A_{ik}(t) \cdot B_{kj}(t) = \sum_{k = 1}^n \partial A_{ik}(t) \cdot B_{kj}(t) + \sum_{k=1}^n A_{ik}(t) \cdot \partial B_{kj}(t)\]

On a donc :

\[\partial (A \cdot B) = \partial A \cdot B + A \cdot \partial B\]

ou, symboliquement :

\[d(A \cdot B) = dA \cdot B + A \cdot dB\]

6. Matrice inverse

Considérons le cas où \(A\) est carrée (\(m = n\)). En dérivant la relation \(A \cdot A^{-1} = I\), on obtient :

\[0 = dI = d(A \cdot A^{-1}) = dA \cdot A^{-1} + A \cdot dA^{-1}\]

et donc :

\[d(A^{-1}) = - A^{-1} \cdot dA \cdot A^{-1}\]

Auteur: chimay

Created: 2025-10-21 mar 15:51

Validate