Eclats de vers : Matemat : Développements d’Hadamard

Index des Grimoires

Retour à l’accueil

Table des matières

\( \newcommand{\parentheses}[1]{\left(#1\right)} \newcommand{\crochets}[1]{\left[#1\right]} \newcommand{\accolades}[1]{\left\{#1\right\}} \newcommand{\ensemble}[1]{\left\{#1\right\}} \newcommand{\identite}{\mathrm{Id}} \newcommand{\indicatrice}{\boldsymbol{\delta}} \newcommand{\dirac}{\delta} \newcommand{\moinsun}{{-1}} \newcommand{\inverse}{\ddagger} \newcommand{\pinverse}{\dagger} \newcommand{\topologie}{\mathfrak{T}} \newcommand{\ferme}{\mathfrak{F}} \newcommand{\img}{\mathbf{i}} \newcommand{\binome}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\canonique}{\mathfrak{c}} \newcommand{\tenseuridentite}{\boldsymbol{\mathcal{I}}} \newcommand{\permutation}{\boldsymbol{\epsilon}} \newcommand{\matriceZero}{\mathfrak{0}} \newcommand{\matriceUn}{\mathfrak{1}} \newcommand{\christoffel}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\lagrangien}{\mathfrak{L}} \newcommand{\sousens}{\mathfrak{P}} \newcommand{\partition}{\mathrm{Partition}} \newcommand{\tribu}{\mathrm{Tribu}} \newcommand{\topologies}{\mathrm{Topo}} \newcommand{\setB}{\mathbb{B}} \newcommand{\setN}{\mathbb{N}} \newcommand{\setZ}{\mathbb{Z}} \newcommand{\setQ}{\mathbb{Q}} \newcommand{\setR}{\mathbb{R}} \newcommand{\setC}{\mathbb{C}} \newcommand{\corps}{\mathbb{K}} \newcommand{\boule}{\mathfrak{B}} \newcommand{\intervalleouvert}[2]{\left] #1 , #2 \right[} \newcommand{\intervallesemiouvertgauche}[2]{ \left] #1 , #2 \right]} \newcommand{\intervallesemiouvertdroite}[2]{\left[ #1 , #2 \right[ } \newcommand{\fonction}{\mathbb{F}} \newcommand{\bijection}{\mathrm{Bij}} \newcommand{\polynome}{\mathrm{Poly}} \newcommand{\lineaire}{\mathrm{Lin}} \newcommand{\continue}{\mathrm{Cont}} \newcommand{\homeomorphisme}{\mathrm{Hom}} \newcommand{\etagee}{\mathrm{Etagee}} \newcommand{\lebesgue}{\mathrm{Leb}} \newcommand{\lipschitz}{\mathrm{Lip}} \newcommand{\suitek}{\mathrm{Suite}} \newcommand{\matrice}{\mathbb{M}} \newcommand{\krylov}{\mathrm{Krylov}} \newcommand{\tenseur}{\mathbb{T}} \newcommand{\essentiel}{\mathfrak{E}} \newcommand{\relation}{\mathrm{Rel}} \DeclareMathOperator*{\strictinferieur}{\ < \ } \DeclareMathOperator*{\strictsuperieur}{\ > \ } \DeclareMathOperator*{\ensinferieur}{\eqslantless} \DeclareMathOperator*{\enssuperieur}{\eqslantgtr} \DeclareMathOperator*{\esssuperieur}{\gtrsim} \DeclareMathOperator*{\essinferieur}{\lesssim} \newcommand{\essegal}{\eqsim} \newcommand{\union}{\ \cup \ } \newcommand{\intersection}{\ \cap \ } \newcommand{\opera}{\divideontimes} \newcommand{\autreaddition}{\boxplus} \newcommand{\autremultiplication}{\circledast} \newcommand{\commutateur}[2]{\left[ #1 , #2 \right]} \newcommand{\convolution}{\circledcirc} \newcommand{\correlation}{\ \natural \ } \newcommand{\diventiere}{\div} \newcommand{\modulo}{\bmod} \DeclareMathOperator*{\pgcd}{pgcd} \DeclareMathOperator*{\ppcm}{ppcm} \newcommand{\produitscalaire}[2]{\left\langle #1 \vert #2 \right\rangle} \newcommand{\scalaire}[2]{\left\langle #1 \| #2 \right\rangle} \newcommand{\braket}[3]{\left\langle #1 \vert #2 \vert #3 \right\rangle} \newcommand{\orthogonal}{\bot} \newcommand{\forme}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\biforme}[3]{\left\langle #1 , #2 , #3 \right\rangle} \newcommand{\contraction}[3]{\left\langle #1 \odot #3 \right\rangle_{#2}} \newcommand{\dblecont}[5]{\left\langle #1 \vert #3 \vert #5 \right\rangle_{#2,#4}} \DeclareMathOperator*{\major}{major} \DeclareMathOperator*{\minor}{minor} \DeclareMathOperator*{\maxim}{maxim} \DeclareMathOperator*{\minim}{minim} \DeclareMathOperator*{\argument}{arg} \DeclareMathOperator*{\argmin}{arg\ min} \DeclareMathOperator*{\argmax}{arg\ max} \DeclareMathOperator*{\supessentiel}{ess\ sup} \DeclareMathOperator*{\infessentiel}{ess\ inf} \newcommand{\dual}{\star} \newcommand{\distance}{\mathfrak{dist}} \newcommand{\norme}[1]{\left\| #1 \right\|} \newcommand{\normetrois}[1]{\left|\left\| #1 \right\|\right|} \DeclareMathOperator*{\adh}{adh} \DeclareMathOperator*{\interieur}{int} \newcommand{\frontiere}{\partial} \DeclareMathOperator*{\image}{im} \DeclareMathOperator*{\domaine}{dom} \DeclareMathOperator*{\noyau}{ker} \DeclareMathOperator*{\support}{supp} \DeclareMathOperator*{\signe}{sign} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\unsur}[1]{\frac{1}{#1}} \newcommand{\arrondisup}[1]{\lceil #1 \rceil} \newcommand{\arrondiinf}[1]{\lfloor #1 \rfloor} \DeclareMathOperator*{\conjugue}{conj} \newcommand{\conjaccent}[1]{\overline{#1}} \DeclareMathOperator*{\division}{division} \newcommand{\difference}{\boldsymbol{\Delta}} \newcommand{\differentielle}[2]{\mathfrak{D}^{#1}_{#2}} \newcommand{\OD}[2]{\frac{d #1}{d #2}} \newcommand{\OOD}[2]{\frac{d^2 #1}{d #2^2}} \newcommand{\NOD}[3]{\frac{d^{#3} #1}{d #2^{#3}}} \newcommand{\deriveepartielle}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\PD}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dblederiveepartielle}[2]{\frac{\partial^2 #1}{\partial #2 \partial #2}} \newcommand{\dfdxdy}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\dfdxdx}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\gradient}{\mathbf{\nabla}} \newcommand{\combilin}[1]{\mathrm{span}\{ #1 \}} \DeclareMathOperator*{\trace}{tr} \newcommand{\proba}{\mathbb{P}} \newcommand{\probaof}[1]{\mathbb{P}\left[#1\right]} \newcommand{\esperof}[1]{\mathbb{E}\left[#1\right]} \newcommand{\cov}[2]{\mathrm{cov} \left( #1 , #2 \right) } \newcommand{\var}[1]{\mathrm{var} \left( #1 \right) } \newcommand{\rand}{\mathrm{rand}} \newcommand{\variation}[1]{\left\langle #1 \right\rangle} \DeclareMathOperator*{\composante}{comp} \DeclareMathOperator*{\bloc}{bloc} \DeclareMathOperator*{\ligne}{ligne} \DeclareMathOperator*{\colonne}{colonne} \DeclareMathOperator*{\diagonale}{diag} \newcommand{\matelementaire}{\mathrm{Elem}} \DeclareMathOperator*{\matpermutation}{permut} \newcommand{\matunitaire}{\mathrm{Unitaire}} \newcommand{\gaussjordan}{\mathrm{GaussJordan}} \newcommand{\householder}{\mathrm{Householder}} \DeclareMathOperator*{\rang}{rang} \newcommand{\schur}{\mathrm{Schur}} \newcommand{\singuliere}{\mathrm{DVS}} \newcommand{\convexe}{\mathrm{Convexe}} \newcommand{\petito}[1]{o\left(#1\right)} \newcommand{\grando}[1]{O\left(#1\right)} \)

\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)

\label{chap:fonda}

1. Dépendances

  • Chapitre \ref{chap:differ} : Les différentielles
  • Chapitre \ref{chap:integral} : Les intégrales

2. Lemme de Hadamard

Soit la fonction \(f : \setR^m \to \setR^n\) et les vecteurs \(u,v \in \setR^m\). On définit la fonction \(\lambda : [0,1] \mapsto \setR^m\) associée au segment \([u,v] \subseteq \setR^m\) par :

\[\lambda(s) = u + s \cdot (v - u)\]

pour tout \(s \in [0,1]\). On a bien entendu \(\lambda(0) = u\) et \(\lambda(1) = v\). On définit également la fonction \(\varphi = f \circ \lambda\) qui vérifie :

\[\varphi(s) = (f \circ \lambda)(s) = f(u + s \cdot (v - u))\]

pour tout \(t \in [0,1]\). On voit que \(\varphi(0) = f(u)\) et \(\varphi(1) = f(v)\). Donc, en termes de composantes dans \(\setR^n\), on a :

\[f_i(v) - f_i(u) = \varphi_i(1) - \varphi_i(0) = \int_0^1 \OD{\varphi_i}{s}(s) \ ds\]

où \(i \in \{1,2,...,n\}\).

Voyons quelle est la forme de la dérivée :

\begin{align} \OD{\varphi_i}{s}(s) &= \sum_j \partial_j f_i(u + s \cdot (v - u)) \cdot \partial \lambda_j(s) \) \( &= \sum_j \partial_j f_i(u + s \cdot (v - u)) \cdot (v_j - u_j) \end{align}

où \(j \in \{1,2,...,m\}\). Si nous définissons :

\[G_{ij}(u,v) = \int_0^1 \partial_j f_i(u + s \cdot (v - u)) \ ds\]

nous obtenons alors l'expression de la variation :

\[f_i(v) - f_i(u) = \sum_j G_{ij}(u,v) \cdot (v_j - u_j)\]

En termes matriciels :

$$G(u,v) = \big[Gij(u,v)\big]i,j = \left[ \int_0^1 \partial_j f_i(u + s \cdot (v - u)) \ ds \right]i,j

est donc l'intégrale de la Jacobienne :

\[G(u,v) = \int_0^1 \partial f(u + s \cdot (v - u)) \ ds\]

et :

\[f(v) - f(u) = G(u,v) \cdot (v - u)\]

3. Développement du second ordre

Soit la fonction \(f \in \continue^2(\setR^n,\setR)\) et les vecteurs \(a,h \in \setR^n\). On définit la fonction \(\lambda : [0,1] \mapsto \setR^n\) associée au segment \([a, a + h]\) :

\[\lambda(s) = a + s \cdot h\]

pour tout \(s \in [0,1]\). Le lemme de Hadamard nous dit que :

\[f(a + h) - f(a) = \int_0^1 \partial f(a + s \cdot h) \cdot h \ ds\]

Par définition de la dérivée seconde, on a :

\[\partial_i f(a + s \cdot h) = \partial_i f(a) + \sum_j \partial_{ji}^2 f(a) \cdot h_j \cdot s + e_i(s \cdot h)\]

où l'erreur \(e\) vérifie :

\[\lim_{h \to 0} \frac{ \norme{e(h)} }{ \norme{h} } = 0\]

L'intégrale s'écrit alors :

\[f(a + h) - f(a) = \sum_i \int_0^1 \left[ \partial_i f(a) + \sum_j \partial_{ji}^2 f(a) \cdot h_j \cdot s + e_i(s \cdot h) \right] \cdot h_i \ ds\]

La grandeur \(\partial_i f(a) \cdot h_i\) ne dépendant pas de \(s\), on a :

\[\int_0^1 \partial_i f(a) \cdot h_i \ ds = \partial_i f(a) \cdot h_i \cdot (1 - 0) = \partial_i f(a) \cdot h_i\]

D'un autre coté, comme \(s^2/2\) est une primitive de \(s\), on a :

\[\int_0^1 s \ ds = \unsur{2} \cdot (1^2 - 0^2) = \unsur{2}\]

et donc :

\[\int_0^1 \partial_{ji}^2 f(a) \cdot h_j \cdot h_i \cdot s \ ds = \unsur{2} \partial_{ji}^2 f(a) \cdot h_j \cdot h_i\]

Posons :

\[\mathcal{E}_2(h) = \sum_i \int_0^1 e_i(s \cdot h) \cdot h_i \ ds\]

On a alors :

\[f(a + h) - f(a) = \sum_i \partial_i f(a) \cdot h_i + \unsur{2} \sum_{i,j} h_j \cdot \partial_{ji}^2 f(a) \cdot h_i + \mathcal{E}_2(h)\]

En termes matriciels, cette expression fait intervenir la Jacobienne et la Hessienne :

\[f(a + h) - f(a) = \partial f(a) \cdot h + \unsur{2} \ h^\dual \cdot \partial^2 f(a) \cdot h + \mathcal{E}_2(h)\]

3.1. Comportement de l'erreur

Nous savons que, pour toute précision \(\epsilon \strictsuperieur 0\), nous pouvons trouver un \(\delta \strictsuperieur 0\) tel que :

\[\frac{\norme{e(h)}}{\norme{h}} \le \epsilon\]

pour tout \(h\) vérifiant \(\norme{h} \le \delta\). Comme \(\abs{e_i} \le \norme{e}\) et \(\abs{h_i} \le \norme{h}\), on a alors :

\begin{align} \abs{\mathcal{E}_2(h)} &\le \sum_i \abs{\int_0^1 e_i(s \cdot h) \cdot h_i \ ds} \) \( &\le n \cdot \epsilon \cdot \norme{h}^2 \end{align}

L'erreur décroît donc plus vite que \(\norme{h}^2\) :

\[\lim_{h \to 0} \frac{ \abs{\mathcal{E}_2(h)} }{ \norme{h}^2 } = 0\]

3.2. Dérivées ordinaires

Lorsque \(n = 1\), le développement est simplement :

\[f(a + h) = f(a) + \OD{f}{x}(a) \cdot h + \OOD{f}{x}(a) \cdot \frac{h^2}{2} + \mathcal{E}_2(h)\]

On constate qu'il est analogue au développement de Taylor d'ordre deux autour de \(a\).

4. Développement du troisième ordre

Soit la fonction \(f \in \continue^3(\setR^n,\setR)\) et les vecteurs \(a,h \in \setR^n\). En évaluant le développement du second ordre de chaque \(\partial_i f\), on a :

\[\partial_i f(a + s \cdot h) = \partial_i f(a) + \sum_j \partial_{ji} f(a) \cdot h_j \cdot s + \sum_{j,k} h_k \cdot \partial_{kji}^3 f(a) \cdot h_j \cdot \frac{s^2}{2} + e_i(h)\]

où \(e \sim \petito{h^2}\). En intégrant, nous obtenons une estimation de la variation de \(f\) :

\[f(a + h) - f(a) = \sum_i \int_0^1 \partial_i f(a + s \cdot h) \cdot h_i \ ds\]

Posons :

\begin{align} I_1(h) &= \sum_i \int_0^1 \partial_i f(a) \cdot h_i \ ds \) \( I_2(h) &= \sum_{i,j} \int_0^1 h_j \cdot \partial_{ji} f(a) \cdot h_i \cdot s \ ds \) \( I_3(h) &= \unsur{2} \sum_{i,j,k} \int_0^1 h_k \cdot \partial_{kji}^3 f(a) \cdot h_j \cdot h_i \cdot s^2 \ ds \) \( \mathcal{E}_3(h) &= \sum_i \int_0^1 e_i(h) \cdot h_i \ ds \end{align}

Comme \(s^3/3\) est une primitive de \(s^2\), on a :

\[\int_0^1 s^2 \ ds = \unsur{3} \cdot (1^3 - 0^3) = \unsur{3}\]

Les intégrales s'écrivent donc :

\begin{align} I_1(h) &= \sum_i \partial_i f(a) \cdot h_i \) \( I_2(h) &= \unsur{2} \sum_{i,j} h_i \cdot \partial_{ji} f(a) \cdot h_j \) \( I_3(h) &= \unsur{6} \sum_{i,j,k} \partial_{kji}^3 f(a) \cdot h_i \cdot h_j \cdot h_k \end{align}

et la variation de \(f\) est donnée par :

\[f(a + h) - f(a) = I_1(h) + I_2(h) + I_3(h) + \mathcal{E}_3(h)\]

En terme de notations tensorielles, on peut l'écrire symboliquement :

\[f(a + h) - f(a) = \partial f(a) \cdot h + \unsur{2} h^\dual \cdot \partial^2 f(a) \cdot h + \unsur{6} \contraction{\partial^3 f(a)}{3}{h \otimes h \otimes h}\]

4.1. Comportement de l'erreur

Nous savons que, pour toute précision \(\epsilon \strictsuperieur 0\), nous pouvons trouver un \(\delta \strictsuperieur 0\) tel que :

\[\frac{\norme{e(h)}}{\norme{h}^2} \le \epsilon\]

pour tout \(h\) vérifiant \(\norme{h} \le \delta\). Comme \(\abs{e_i(h)} \le \norme{e(h)}\) et \(\abs{h_i} \le \norme{h}\), on a :

\begin{align} \abs{\mathcal{E}_3(h)} &\le \sum_i \abs{\int_0^1 e_i(h) \cdot h_i \ ds} \) \( &\le n \cdot \epsilon \cdot \norme{h}^3 \end{align}

L'erreur \(\abs{\mathcal{E}_3(h)}\) est donc en \(\petito{h^3}\).

4.2. Dérivées ordinaires

Lorsque \(n = 1\), le développement est simplement :

\[f(a + h) = f(a) + \OD{f}{x}(a) \cdot h + \OOD{f}{x}(a) \cdot \frac{h^2}{2} + \NOD{f}{x}{3} \cdot \frac{h^3}{6} + \mathcal{E}_3(h)\]

On constate qu'il est analogue au développement de Taylor d'ordre trois autour de \(a\).

Auteur: chimay

Created: 2025-10-21 mar 15:51

Validate